HyperAIHyperAI

Toxic Comment Classification On Civil

Metrics

AUROC

Results

Performance results of various models on this benchmark

Model Name
AUROC
Paper TitleRepository
LightGBM + RoBERTa embedding0.865PyTorch Frame: A Modular Framework for Multi-Modal Tabular Learning-
BiLSTM-A benchmark for toxic comment classification on Civil Comments dataset-
Unfreeze Glove ResNet 440.966A benchmark for toxic comment classification on Civil Comments dataset-
Compact Convolutional Transformer (CCT)0.9526A benchmark for toxic comment classification on Civil Comments dataset-
BiGRU-A benchmark for toxic comment classification on Civil Comments dataset-
Freeze Glove ResNet 44-A benchmark for toxic comment classification on Civil Comments dataset-
BERTweet0.979A benchmark for toxic comment classification on Civil Comments dataset-
XLNet-A benchmark for toxic comment classification on Civil Comments dataset-
ResNet + RoBERTa embedding0.882PyTorch Frame: A Modular Framework for Multi-Modal Tabular Learning-
Trompt + OpenAI embedding0.947PyTorch Frame: A Modular Framework for Multi-Modal Tabular Learning-
XLM RoBERTa-A benchmark for toxic comment classification on Civil Comments dataset-
DistilBERT0.9804A benchmark for toxic comment classification on Civil Comments dataset-
PaLM 2 (zero-shot)0.7596PaLM 2 Technical Report-
ResNet + RoBERTa finetune0.97PyTorch Frame: A Modular Framework for Multi-Modal Tabular Learning-
RoBERTa Focal Loss0.9818A benchmark for toxic comment classification on Civil Comments dataset-
RoBERTa BCE0.9813A benchmark for toxic comment classification on Civil Comments dataset-
PaLM 2 (few-shot, k=10)0.8535PaLM 2 Technical Report-
Unfreeze Glove ResNet 560.9639A benchmark for toxic comment classification on Civil Comments dataset-
HateBERT0.9791A benchmark for toxic comment classification on Civil Comments dataset-
ResNet + OpenAI embedding0.945PyTorch Frame: A Modular Framework for Multi-Modal Tabular Learning-
0 of 22 row(s) selected.
Toxic Comment Classification On Civil | SOTA | HyperAI