HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Deep Learning for Detecting Robotic Grasps

Ian Lenz; Honglak Lee; Ashutosh Saxena

Deep Learning for Detecting Robotic Grasps

Abstract

We consider the problem of detecting robotic grasps in an RGB-D view of a scene containing objects. In this work, we apply a deep learning approach to solve this problem, which avoids time-consuming hand-design of features. This presents two main challenges. First, we need to evaluate a huge number of candidate grasps. In order to make detection fast, as well as robust, we present a two-step cascaded structure with two deep networks, where the top detections from the first are re-evaluated by the second. The first network has fewer features, is faster to run, and can effectively prune out unlikely candidate grasps. The second, with more features, is slower but has to run only on the top few detections. Second, we need to handle multimodal inputs well, for which we present a method to apply structured regularization on the weights based on multimodal group regularization. We demonstrate that our method outperforms the previous state-of-the-art methods in robotic grasp detection, and can be used to successfully execute grasps on two different robotic platforms.

Benchmarks

BenchmarkMethodologyMetrics
robotic-grasping-on-cornell-grasp-dataset-1Fast Search
5 fold cross validation: 60.5

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Deep Learning for Detecting Robotic Grasps | Papers | HyperAI