Command Palette
Search for a command to run...
Thomas N. Kipf; Max Welling

Abstract
We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden layer representations that encode both local graph structure and features of nodes. In a number of experiments on citation networks and on a knowledge graph dataset we demonstrate that our approach outperforms related methods by a significant margin.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| graph-classification-on-dd | GCN | Accuracy: 78.151±3.465 |
| graph-classification-on-enzymes | GCN | Accuracy: 73.466±4.372 |
| graph-classification-on-imdb-b | GCN | Accuracy: 79.500±3.109 |
| graph-classification-on-nci1 | GCN | Accuracy: 84.185±0.644 |
| graph-classification-on-nci109 | GCN | Accuracy: 83.140±1.248 |
| graph-classification-on-proteins | GCN | Accuracy: 75.536±1.622 |
| graph-property-prediction-on-ogbg-code2 | GCN | Ext. data: No Number of params: 11033210 Test F1 score: 0.1507 ± 0.0018 Validation F1 score: 0.1399 ± 0.0017 |
| graph-property-prediction-on-ogbg-code2 | GCN+virtual node | Ext. data: No Number of params: 12484310 Test F1 score: 0.1595 ± 0.0018 Validation F1 score: 0.1461 ± 0.0013 |
| graph-property-prediction-on-ogbg-molhiv | GCN (in Julia) | Ext. data: No Number of params: 527701 Test ROC-AUC: 0.7549 ± 0.0163 Validation ROC-AUC: 0.8042 ± 0.0107 |
| graph-property-prediction-on-ogbg-molhiv | GCN+virtual node | Ext. data: No Number of params: 1978801 Test ROC-AUC: 0.7599 ± 0.0119 Validation ROC-AUC: 0.8384 ± 0.0091 |
| graph-property-prediction-on-ogbg-molhiv | GCN | Ext. data: No Number of params: 527701 Test ROC-AUC: 0.7606 ± 0.0097 Validation ROC-AUC: 0.8204 ± 0.0141 |
| graph-property-prediction-on-ogbg-molpcba | GCN | Ext. data: No Number of params: 565928 Test AP: 0.2020 ± 0.0024 Validation AP: 0.2059 ± 0.0033 |
| graph-property-prediction-on-ogbg-molpcba | GCN+virtual node | Ext. data: No Number of params: 2017028 Test AP: 0.2424 ± 0.0034 Validation AP: 0.2495 ± 0.0042 |
| graph-property-prediction-on-ogbg-ppa | GCN | Ext. data: No Number of params: 479437 Test Accuracy: 0.6839 ± 0.0084 Validation Accuracy: 0.6497 ± 0.0034 |
| graph-property-prediction-on-ogbg-ppa | GCN+virtual node | Ext. data: No Number of params: 1930537 Test Accuracy: 0.6857 ± 0.0061 Validation Accuracy: 0.6511 ± 0.0048 |
| graph-regression-on-esr2 | GCN | R2: 0.642±0.000 RMSE: 0.528±0.642 |
| graph-regression-on-f2 | GCN | R2: 0.878±0.000 RMSE: 0.355±0.878 |
| graph-regression-on-kit | GCN | R2: 0.814±0.000 RMSE: 0.469±0.814 |
| graph-regression-on-lipophilicity | GCN | R2: 0.800±0.008 RMSE: 0.565±0.011 |
| graph-regression-on-parp1 | GCN | R2: 0.912±0.000 RMSE: 0.372±0.912 |
| graph-regression-on-pcqm4mv2-lsc | GCN | Test MAE: 0.1398 Validation MAE: 0.1379 |
| graph-regression-on-pgr | GCN | R2: 0.658±0.000 RMSE: 0.565±0.658 |
| graph-regression-on-zinc-full | GCN | Test MAE: 0.152±0.023 |
| heterogeneous-node-classification-on-acm | GCN | Macro-F1: 92.17 Micro-F1: 92.12 |
| heterogeneous-node-classification-on-dblp-2 | GCN | Macro-F1: 90.84 Micro-F1: 91.47 |
| heterogeneous-node-classification-on-freebase | GCN | Macro-F1: 27.84 Micro-F1: 60.23 |
| heterogeneous-node-classification-on-imdb | GCN | Macro-F1: 57.88 Micro-F1: 64.82 |
| link-property-prediction-on-ogbl-citation2 | Full-batch GCN | Ext. data: No Number of params: 296449 Test MRR: 0.8474 ± 0.0021 Validation MRR: 0.8479 ± 0.0023 |
| link-property-prediction-on-ogbl-collab | GCN (val as input) | Ext. data: No Number of params: 296449 Test Hits@50: 0.4714 ± 0.0145 Validation Hits@50: 0.5263 ± 0.0115 |
| link-property-prediction-on-ogbl-collab | GCN | Ext. data: No Number of params: 296449 Test Hits@50: 0.4475 ± 0.0107 Validation Hits@50: 0.5263 ± 0.0115 |
| link-property-prediction-on-ogbl-ddi | GCN+JKNet | Ext. data: No Number of params: 1421571 Test Hits@20: 0.6056 ± 0.0869 Validation Hits@20: 0.6776 ± 0.0095 |
| link-property-prediction-on-ogbl-ddi | GCN | Ext. data: No Number of params: 1289985 Test Hits@20: 0.3707 ± 0.0507 Validation Hits@20: 0.5550 ± 0.0208 |
| link-property-prediction-on-ogbl-ppa | GCN | Ext. data: No Number of params: 278529 Test Hits@100: 0.1867 ± 0.0132 Validation Hits@100: 0.1845 ± 0.0140 |
| molecular-property-prediction-on-esol | GCN | R2: 0.936±0.006 RMSE: 0.520±0.024 |
| molecular-property-prediction-on-freesolv | GCN | R2: 0.957±0.009 RMSE: 0.815±0.086 |
| node-classification-on-brazil-air-traffic | GCN_cheby (Kipf and Welling, 2017) | Accuracy: 0.516 |
| node-classification-on-chameleon-60-20-20 | GCN | 1:1 Accuracy: 64.18 ± 2.62 |
| node-classification-on-citeseer | GCN | Accuracy: 70.3 |
| node-classification-on-citeseer-60-20-20 | GCN | 1:1 Accuracy: 81.39 ± 1.23 |
| node-classification-on-cora | GCN | Accuracy: 81.5% |
| node-classification-on-cora-60-20-20-random | GCN | 1:1 Accuracy: 87.78 ± 0.96 |
| node-classification-on-cornell-60-20-20 | GCN | 1:1 Accuracy: 82.46 ± 3.11 |
| node-classification-on-europe-air-traffic | GCN_cheby (Kipf and Welling, 2017) | Accuracy: 46.0 |
| node-classification-on-europe-air-traffic | GCN (Kipf and Welling, 2017) | Accuracy: 37.1 |
| node-classification-on-facebook | GCN_cheby (Kipf and Welling, 2017) | Accuracy: 64.6 |
| node-classification-on-facebook | GCN (Kipf and Welling, 2017) | Accuracy: 57.5 |
| node-classification-on-film-60-20-20-random | GCN | 1:1 Accuracy: 35.51 ± 0.99 |
| node-classification-on-flickr | GCN_cheby (Kipf and Welling, 2017) | Accuracy: 0.479 |
| node-classification-on-flickr | GCN (Kipf and Welling, 2017) | Accuracy: 0.546 |
| node-classification-on-genius | GCN | Accuracy: 87.42 ± 0.37 |
| node-classification-on-nell | GCN | Accuracy: 66.0 |
| node-classification-on-non-homophilic | GCN | 1:1 Accuracy: 82.46 ± 3.11 |
| node-classification-on-non-homophilic-1 | GCN | 1:1 Accuracy: 75.5 ± 2.92 |
| node-classification-on-non-homophilic-13 | GCN | 1:1 Accuracy: 82.47 ± 0.27 |
| node-classification-on-non-homophilic-14 | GCN | 1:1 Accuracy: 87.42 ± 0.37 |
| node-classification-on-non-homophilic-15 | GCN | 1:1 Accuracy: 62.18 ± 0.26 |
| node-classification-on-non-homophilic-2 | GCN | 1:1 Accuracy: 83.11 ± 3.2 |
| node-classification-on-non-homophilic-4 | GCN | 1:1 Accuracy: 64.18 ± 2.62 |
| node-classification-on-non-homophilic-6 | GCN | 1:1 Accuracy: 62.23±0.53 |
| node-classification-on-penn94 | GCN | Accuracy: 82.47 ± 0.27 |
| node-classification-on-pubmed | GCN | Accuracy: 79.0 |
| node-classification-on-pubmed-60-20-20-random | GCN | 1:1 Accuracy: 88.9 ± 0.32 |
| node-classification-on-squirrel-60-20-20 | GCN | 1:1 Accuracy: 44.76 ± 1.39 |
| node-classification-on-texas-60-20-20-random | GCN | 1:1 Accuracy: 83.11 ± 3.2 |
| node-classification-on-wiki-vote | GCN_cheby (Kipf and Welling, 2017) | Accuracy: 49.5 |
| node-classification-on-wiki-vote | GCN (Kipf and Welling, 2017) | Accuracy: 32.9 |
| node-classification-on-wisconsin-60-20-20 | GCN | 1:1 Accuracy: 75.5 ± 2.92 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.