HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Hard-Aware Deeply Cascaded Embedding

Yuhui Yuan; Kuiyuan Yang; Chao Zhang

Hard-Aware Deeply Cascaded Embedding

Abstract

Riding on the waves of deep neural networks, deep metric learning has also achieved promising results in various tasks using triplet network or Siamese network. Though the basic goal of making images from the same category closer than the ones from different categories is intuitive, it is hard to directly optimize due to the quadratic or cubic sample size. To solve the problem, hard example mining which only focuses on a subset of samples that are considered hard is widely used. However, hard is defined relative to a model, where complex models treat most samples as easy ones and vice versa for simple models, and both are not good for training. Samples are also with different hard levels, it is hard to define a model with the just right complexity and choose hard examples adequately. This motivates us to ensemble a set of models with different complexities in cascaded manner and mine hard examples adaptively, a sample is judged by a series of models with increasing complexities and only updates models that consider the sample as a hard case. We evaluate our method on CARS196, CUB-200-2011, Stanford Online Products, VehicleID and DeepFashion datasets. Our method outperforms state-of-the-art methods by a large margin.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
image-retrieval-on-sopHDC
R@1: 69.5
metric-learning-on-cub-200-2011HDC
R@1: 60.7

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp