Command Palette
Search for a command to run...
Min Bai; Raquel Urtasun

Abstract
Most contemporary approaches to instance segmentation use complex pipelines involving conditional random fields, recurrent neural networks, object proposals, or template matching schemes. In our paper, we present a simple yet powerful end-to-end convolutional neural network to tackle this task. Our approach combines intuitions from the classical watershed transform and modern deep learning to produce an energy map of the image where object instances are unambiguously represented as basins in the energy map. We then perform a cut at a single energy level to directly yield connected components corresponding to object instances. Our model more than doubles the performance of the state-of-the-art on the challenging Cityscapes Instance Level Segmentation task.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| instance-segmentation-on-cityscapes | Deep Watershed Transform | - |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.