HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources

Adrian Bulat; Georgios Tzimiropoulos

Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources

Abstract

Our goal is to design architectures that retain the groundbreaking performance of CNNs for landmark localization and at the same time are lightweight, compact and suitable for applications with limited computational resources. To this end, we make the following contributions: (a) we are the first to study the effect of neural network binarization on localization tasks, namely human pose estimation and face alignment. We exhaustively evaluate various design choices, identify performance bottlenecks, and more importantly propose multiple orthogonal ways to boost performance. (b) Based on our analysis, we propose a novel hierarchical, parallel and multi-scale residual architecture that yields large performance improvement over the standard bottleneck block while having the same number of parameters, thus bridging the gap between the original network and its binarized counterpart. (c) We perform a large number of ablation studies that shed light on the properties and the performance of the proposed block. (d) We present results for experiments on the most challenging datasets for human pose estimation and face alignment, reporting in many cases state-of-the-art performance. Code can be downloaded from https://www.adrianbulat.com/binary-cnn-landmarks

Benchmarks

BenchmarkMethodologyMetrics
face-alignment-on-aflw-full-1Binary Face Alignment
Mean NME : 2.85

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp