HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Count-Based Exploration with Neural Density Models

Georg Ostrovski; Marc G. Bellemare; Aaron van den Oord; Remi Munos

Count-Based Exploration with Neural Density Models

Abstract

Bellemare et al. (2016) introduced the notion of a pseudo-count, derived from a density model, to generalize count-based exploration to non-tabular reinforcement learning. This pseudo-count was used to generate an exploration bonus for a DQN agent and combined with a mixed Monte Carlo update was sufficient to achieve state of the art on the Atari 2600 game Montezuma's Revenge. We consider two questions left open by their work: First, how important is the quality of the density model for exploration? Second, what role does the Monte Carlo update play in exploration? We answer the first question by demonstrating the use of PixelCNN, an advanced neural density model for images, to supply a pseudo-count. In particular, we examine the intrinsic difficulties in adapting Bellemare et al.'s approach when assumptions about the model are violated. The result is a more practical and general algorithm requiring no special apparatus. We combine PixelCNN pseudo-counts with different agent architectures to dramatically improve the state of the art on several hard Atari games. One surprising finding is that the mixed Monte Carlo update is a powerful facilitator of exploration in the sparsest of settings, including Montezuma's Revenge.

Code Repositories

nolisten/erl
tf
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
atari-games-on-atari-2600-freewayDQN-PixelCNN
Score: 31.7
atari-games-on-atari-2600-freewayDQN-CTS
Score: 33.0
atari-games-on-atari-2600-gravitarDQN-CTS
Score: 238.0
atari-games-on-atari-2600-gravitarDQN-PixelCNN
Score: 498.3
atari-games-on-atari-2600-montezumas-revengeDQN-PixelCNN
Score: 3705.5
atari-games-on-atari-2600-private-eyeDQN-PixelCNN
Score: 8358.7
atari-games-on-atari-2600-private-eyeDQN-CTS
Score: 206.0
atari-games-on-atari-2600-ventureDQN-PixelCNN
Score: 82.2
atari-games-on-atari-2600-ventureDQN-CTS
Score: 48.0

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp