HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

DeepSleepNet: a Model for Automatic Sleep Stage Scoring based on Raw Single-Channel EEG

Akara Supratak; Hao Dong; Chao Wu; Yike Guo

DeepSleepNet: a Model for Automatic Sleep Stage Scoring based on Raw Single-Channel EEG

Abstract

The present study proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features which require prior knowledge of sleep analysis. Only a few of them encode the temporal information such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize Convolutional Neural Networks to extract time-invariant features, and bidirectional-Long Short-Term Memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG(Left), Fpz-Cz and Pz-Oz) from two public sleep datasets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared to the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both datasets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different datasets without utilizing any hand-engineered features.

Code Repositories

wangjinzhuo/wearables
pytorch
Mentioned in GitHub
CVxTz/EEG_classification
Mentioned in GitHub
famousgrouse/AccSleepNet
tf
Mentioned in GitHub
leesk212/new_deepsleepnet
tf
Mentioned in GitHub
emadeldeen24/eval_ssl_ssc
pytorch
Mentioned in GitHub
UKBWorks/AccSleepNet
tf
Mentioned in GitHub
akaraspt/deepsleepnet
Official
tf
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
sleep-stage-detection-on-mass-ss3DeepSleepNet
Accuracy: 86.2%
Cohen's kappa: 0.8
Macro-F1: 0.817
sleep-stage-detection-on-sleep-edfDeepSleepNet
Accuracy: 82%
Cohen's kappa: 0.76
Macro-F1: 0.769

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp