HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals

Shanxin Yuan; Guillermo Garcia-Hernando; Bjorn Stenger; Gyeongsik Moon; Ju Yong Chang; Kyoung Mu Lee; Pavlo Molchanov; Jan Kautz; Sina Honari; Liuhao Ge; Junsong Yuan; Xinghao Chen; Guijin Wang; Fan Yang; Kai Akiyama; Yang Wu; Qingfu Wan; Meysam Madadi; Sergio Escalera; Shile Li; Dongheui Lee; Iason Oikonomidis; Antonis Argyros; Tae-Kyun Kim

Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals

Abstract

In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-of-the-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We analyze the performance of different CNN structures with regard to hand shape, joint visibility, view point and articulation distributions. Our findings include: (1) isolated 3D hand pose estimation achieves low mean errors (10 mm) in the view point range of [70, 120] degrees, but it is far from being solved for extreme view points; (2) 3D volumetric representations outperform 2D CNNs, better capturing the spatial structure of the depth data; (3) Discriminative methods still generalize poorly to unseen hand shapes; (4) While joint occlusions pose a challenge for most methods, explicit modeling of structure constraints can significantly narrow the gap between errors on visible and occluded joints.

Code Repositories

mks0601/V2V-PoseNet_RELEASE
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
hand-pose-estimation-on-hands-2017RCN-3D
Average 3D Error: 9.97
hand-pose-estimation-on-hands-2017Vanora
Average 3D Error: 11.91

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals | Papers | HyperAI