HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

2D/3D Pose Estimation and Action Recognition using Multitask Deep Learning

Diogo C. Luvizon; David Picard; Hedi Tabia

2D/3D Pose Estimation and Action Recognition using Multitask Deep Learning

Abstract

Action recognition and human pose estimation are closely related but both problems are generally handled as distinct tasks in the literature. In this work, we propose a multitask framework for jointly 2D and 3D pose estimation from still images and human action recognition from video sequences. We show that a single architecture can be used to solve the two problems in an efficient way and still achieves state-of-the-art results. Additionally, we demonstrate that optimization from end-to-end leads to significantly higher accuracy than separated learning. The proposed architecture can be trained with data from different categories simultaneously in a seamlessly way. The reported results on four datasets (MPII, Human3.6M, Penn Action and NTU) demonstrate the effectiveness of our method on the targeted tasks.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
3d-human-pose-estimation-on-human36m2D-3D-Softargmax (multi-crop + h.flip)
Average MPJPE (mm): 53.2
action-recognition-in-videos-on-ntu-rgb-d2D-3D-Softargmax (RGB only)
Accuracy (CS): 85.5

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp