HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Open Source Automatic Speech Recognition for German

Benjamin Milde; Arne Köhn

Open Source Automatic Speech Recognition for German

Abstract

High quality Automatic Speech Recognition (ASR) is a prerequisite for speech-based applications and research. While state-of-the-art ASR software is freely available, the language dependent acoustic models are lacking for languages other than English, due to the limited amount of freely available training data. We train acoustic models for German with Kaldi on two datasets, which are both distributed under a Creative Commons license. The resulting model is freely redistributable, lowering the cost of entry for German ASR. The models are trained on a total of 412 hours of German read speech data and we achieve a relative word error reduction of 26% by adding data from the Spoken Wikipedia Corpus to the previously best freely available German acoustic model recipe and dataset. Our best model achieves a word error rate of 14.38 on the Tuda-De test set. Due to the large amount of speakers and the diversity of topics included in the training data, our model is robust against speaker variation and topic shift.

Code Repositories

tudarmstadt-lt/kaldi-tuda-de
Mentioned in GitHub
uhh-lt/kaldi-tuda-de
Official
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
speech-recognition-on-tudaKaldi
Test WER: 14.4%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp