HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Generating Text through Adversarial Training using Skip-Thought Vectors

Afroz Ahamad

Generating Text through Adversarial Training using Skip-Thought Vectors

Abstract

GANs have been shown to perform exceedingly well on tasks pertaining to image generation and style transfer. In the field of language modelling, word embeddings such as GLoVe and word2vec are state-of-the-art methods for applying neural network models on textual data. Attempts have been made to utilize GANs with word embeddings for text generation. This study presents an approach to text generation using Skip-Thought sentence embeddings with GANs based on gradient penalty functions and f-measures. The proposed architecture aims to reproduce writing style in the generated text by modelling the way of expression at a sentence level across all the works of an author. Extensive experiments were run in different embedding settings on a variety of tasks including conditional text generation and language generation. The model outperforms baseline text generation networks across several automated evaluation metrics like BLEU-n, METEOR and ROUGE. Further, wide applicability and effectiveness in real life tasks are demonstrated through human judgement scores.

Code Repositories

afrozas/skip-thought-gan
Official
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
text-generation-on-cmu-seSTWGAN-GP
BLEU-3: 0.617

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp