HyperAIHyperAI

Command Palette

Search for a command to run...

SiamVGG: Visual Tracking using Deeper Siamese Networks

Yuhong Li; Xiaofan Zhang; Deming Chen

Abstract

Recently, we have seen a rapid development of Deep Neural Network (DNN) based visual tracking solutions. Some trackers combine the DNN-based solutions with Discriminative Correlation Filters (DCF) to extract semantic features and successfully deliver the state-of-the-art tracking accuracy. However, these solutions are highly compute-intensive, which require long processing time, resulting unsecured real-time performance. To deliver both high accuracy and reliable real-time performance, we propose a novel tracker called SiamVGG\footnote{https://github.com/leeyeehoo/SiamVGG}. It combines a Convolutional Neural Network (CNN) backbone and a cross-correlation operator, and takes advantage of the features from exemplary images for more accurate object tracking. The architecture of SiamVGG is customized from VGG-16 with the parameters shared by both exemplary images and desired input video frames. We demonstrate the proposed SiamVGG on OTB-2013/50/100 and VOT 2015/2016/2017 datasets with the state-of-the-art accuracy while maintaining a decent real-time performance of 50 FPS running on a GTX 1080Ti. Our design can achieve 2% higher Expected Average Overlap (EAO) compared to the ECO and C-COT in VOT2017 Challenge.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp