Command Palette
Search for a command to run...
CODAH: An Adversarially Authored Question-Answer Dataset for Common Sense
Michael Chen; Mike D'Arcy; Alisa Liu; Jared Fernandez; Doug Downey

Abstract
Commonsense reasoning is a critical AI capability, but it is difficult to construct challenging datasets that test common sense. Recent neural question answering systems, based on large pre-trained models of language, have already achieved near-human-level performance on commonsense knowledge benchmarks. These systems do not possess human-level common sense, but are able to exploit limitations of the datasets to achieve human-level scores. We introduce the CODAH dataset, an adversarially-constructed evaluation dataset for testing common sense. CODAH forms a challenging extension to the recently-proposed SWAG dataset, which tests commonsense knowledge using sentence-completion questions that describe situations observed in video. To produce a more difficult dataset, we introduce a novel procedure for question acquisition in which workers author questions designed to target weaknesses of state-of-the-art neural question answering systems. Workers are rewarded for submissions that models fail to answer correctly both before and after fine-tuning (in cross-validation). We create 2.8k questions via this procedure and evaluate the performance of multiple state-of-the-art question answering systems on our dataset. We observe a significant gap between human performance, which is 95.3%, and the performance of the best baseline accuracy of 67.5% by the BERT-Large model.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| common-sense-reasoning-on-codah | BERT Large | Accuracy: 69.6 |
| question-answering-on-codah | BERT Large | Accuracy: 69.6 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.