HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Domain Adaptation for Vehicle Detection from Bird's Eye View LiDAR Point Cloud Data

Khaled Saleh; Ahmed Abobakr; Mohammed Attia; Julie Iskander; Darius Nahavandi; Mohammed Hossny

Domain Adaptation for Vehicle Detection from Bird's Eye View LiDAR Point Cloud Data

Abstract

Point cloud data from 3D LiDAR sensors are one of the most crucial sensor modalities for versatile safety-critical applications such as self-driving vehicles. Since the annotations of point cloud data is an expensive and time-consuming process, therefore recently the utilisation of simulated environments and 3D LiDAR sensors for this task started to get some popularity. With simulated sensors and environments, the process for obtaining an annotated synthetic point cloud data became much easier. However, the generated synthetic point cloud data are still missing the artefacts usually exist in point cloud data from real 3D LiDAR sensors. As a result, the performance of the trained models on this data for perception tasks when tested on real point cloud data is degraded due to the domain shift between simulated and real environments. Thus, in this work, we are proposing a domain adaptation framework for bridging this gap between synthetic and real point cloud data. Our proposed framework is based on the deep cycle-consistent generative adversarial networks (CycleGAN) architecture. We have evaluated the performance of our proposed framework on the task of vehicle detection from a bird's eye view (BEV) point cloud images coming from real 3D LiDAR sensors. The framework has shown competitive results with an improvement of more than 7% in average precision score over other baseline approaches when tested on real BEV point cloud images.

Benchmarks

BenchmarkMethodologyMetrics
unsupervised-domain-adaptation-on-presil-to-1CycleGAN
AP@0.7: 16.5

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Domain Adaptation for Vehicle Detection from Bird's Eye View LiDAR Point Cloud Data | Papers | HyperAI