HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Capsule Routing via Variational Bayes

Fabio De Sousa Ribeiro; Georgios Leontidis; Stefanos Kollias

Capsule Routing via Variational Bayes

Abstract

Capsule networks are a recently proposed type of neural network shown to outperform alternatives in challenging shape recognition tasks. In capsule networks, scalar neurons are replaced with capsule vectors or matrices, whose entries represent different properties of objects. The relationships between objects and their parts are learned via trainable viewpoint-invariant transformation matrices, and the presence of a given object is decided by the level of agreement among votes from its parts. This interaction occurs between capsule layers and is a process called routing-by-agreement. In this paper, we propose a new capsule routing algorithm derived from Variational Bayes for fitting a mixture of transforming gaussians, and show it is possible transform our capsule network into a Capsule-VAE. Our Bayesian approach addresses some of the inherent weaknesses of MLE based models such as the variance-collapse by modelling uncertainty over capsule pose parameters. We outperform the state-of-the-art on smallNORB using 50% fewer capsules than previously reported, achieve competitive performances on CIFAR-10, Fashion-MNIST, SVHN, and demonstrate significant improvement in MNIST to affNIST generalisation over previous works.

Code Repositories

fabio-deep/Variational-Capsule-Routing
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
image-classification-on-smallnorbVB-Routing
Classification Error: 1.29

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp