HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

A Cascade Sequence-to-Sequence Model for Chinese Mandarin Lip Reading

Ya Zhao; Rui Xu; Mingli Song

A Cascade Sequence-to-Sequence Model for Chinese Mandarin Lip Reading

Abstract

Lip reading aims at decoding texts from the movement of a speaker's mouth. In recent years, lip reading methods have made great progress for English, at both word-level and sentence-level. Unlike English, however, Chinese Mandarin is a tone-based language and relies on pitches to distinguish lexical or grammatical meaning, which significantly increases the ambiguity for the lip reading task. In this paper, we propose a Cascade Sequence-to-Sequence Model for Chinese Mandarin (CSSMCM) lip reading, which explicitly models tones when predicting sentence. Tones are modeled based on visual information and syntactic structure, and are used to predict sentence along with visual information and syntactic structure. In order to evaluate CSSMCM, a dataset called CMLR (Chinese Mandarin Lip Reading) is collected and released, consisting of over 100,000 natural sentences from China Network Television website. When trained on CMLR dataset, the proposed CSSMCM surpasses the performance of state-of-the-art lip reading frameworks, which confirms the effectiveness of explicit modeling of tones for Chinese Mandarin lip reading.

Benchmarks

BenchmarkMethodologyMetrics
lipreading-on-cmlrLipCH-Net
CER: 34.07%
lipreading-on-cmlrCSSMCM
CER: 32.48%
lipreading-on-cmlrWAS
CER: 38.93%

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
A Cascade Sequence-to-Sequence Model for Chinese Mandarin Lip Reading | Papers | HyperAI