HyperAIHyperAI

Command Palette

Search for a command to run...

4 months ago

Progressive Face Super-Resolution via Attention to Facial Landmark

Deokyun Kim; Minseon Kim; Gihyun Kwon; Dae-Shik Kim

Progressive Face Super-Resolution via Attention to Facial Landmark

Abstract

Face Super-Resolution (SR) is a subfield of the SR domain that specifically targets the reconstruction of face images. The main challenge of face SR is to restore essential facial features without distortion. We propose a novel face SR method that generates photo-realistic 8x super-resolved face images with fully retained facial details. To that end, we adopt a progressive training method, which allows stable training by splitting the network into successive steps, each producing output with a progressively higher resolution. We also propose a novel facial attention loss and apply it at each step to focus on restoring facial attributes in greater details by multiplying the pixel difference and heatmap values. Lastly, we propose a compressed version of the state-of-the-art face alignment network (FAN) for landmark heatmap extraction. With the proposed FAN, we can extract the heatmaps suitable for face SR and also reduce the overall training time. Experimental results verify that our method outperforms state-of-the-art methods in both qualitative and quantitative measurements, especially in perceptual quality.

Code Repositories

DeokyunKim/Progressive-Face-Super-Resolution
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
face-alignment-on-celeba-aflw-unalignedProgressive Face SR
MOS: 3.73
MS-SSIM: 0.897
PSNR: 22.96
SSIM: 0.695
face-alignment-on-celeba-alignedProgressive Face SR
MOS: 3.73
MS-SSIM: 0.902
PSNR: 22.66
SSIM: 0.685

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp