Command Palette
Search for a command to run...
HandAugment: A Simple Data Augmentation Method for Depth-Based 3D Hand Pose Estimation
Zhaohui Zhang Shipeng Xie Mingxiu Chen Haichao Zhu

Abstract
Hand pose estimation from 3D depth images, has been explored widely using various kinds of techniques in the field of computer vision. Though, deep learning based method improve the performance greatly recently, however, this problem still remains unsolved due to lack of large datasets, like ImageNet or effective data synthesis methods. In this paper, we propose HandAugment, a method to synthesize image data to augment the training process of the neural networks. Our method has two main parts: First, We propose a scheme of two-stage neural networks. This scheme can make the neural networks focus on the hand regions and thus to improve the performance. Second, we introduce a simple and effective method to synthesize data by combining real and synthetic image together in the image space. Finally, we show that our method achieves the first place in the task of depth-based 3D hand pose estimation in HANDS 2019 challenge.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| hand-pose-estimation-on-hands-2019 | HandAugment | Average 3D Error: 13.66 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.