HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking

Jonathon Luiten Idil Esen Zulfikar Bastian Leibe

UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking

Abstract

We address Unsupervised Video Object Segmentation (UVOS), the task of automatically generating accurate pixel masks for salient objects in a video sequence and of tracking these objects consistently through time, without any input about which objects should be tracked. Towards solving this task, we present UnOVOST (Unsupervised Offline Video Object Segmentation and Tracking) as a simple and generic algorithm which is able to track and segment a large variety of objects. This algorithm builds up tracks in a number stages, first grouping segments into short tracklets that are spatio-temporally consistent, before merging these tracklets into long-term consistent object tracks based on their visual similarity. In order to achieve this we introduce a novel tracklet-based Forest Path Cutting data association algorithm which builds up a decision forest of track hypotheses before cutting this forest into paths that form long-term consistent object tracks. When evaluating our approach on the DAVIS 2017 Unsupervised dataset we obtain state-of-the-art performance with a mean J &F score of 67.9% on the val, 58% on the test-dev and 56.4% on the test-challenge benchmarks, obtaining first place in the DAVIS 2019 Unsupervised Video Object Segmentation Challenge. UnOVOST even performs competitively with many semi-supervised video object segmentation algorithms even though it is not given any input as to which objects should be tracked and segmented.

Code Repositories

idilesenzulfikar/UNOVOST
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
unsupervised-video-object-segmentation-on-4UnOVOST
F-measure (Mean): 69.3
F-measure (Recall): 76.9
Ju0026F: 67.9
Jaccard (Mean): 66.4
Jaccard (Recall): 76.4
unsupervised-video-object-segmentation-on-5UnOVSOT
F-measure (Decay): 6.6
F-measure (Mean): 62.0
F-measure (Recall): 66.6
Ju0026F: 58.0
Jaccard (Decay): 3.5
Jaccard (Mean): 54.0
Jaccard (Recall): 62.9

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
UnOVOST: Unsupervised Offline Video Object Segmentation and Tracking | Papers | HyperAI