HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Understanding Self-Training for Gradual Domain Adaptation

Ananya Kumar Tengyu Ma Percy Liang

Understanding Self-Training for Gradual Domain Adaptation

Abstract

Machine learning systems must adapt to data distributions that evolve over time, in applications ranging from sensor networks and self-driving car perception modules to brain-machine interfaces. We consider gradual domain adaptation, where the goal is to adapt an initial classifier trained on a source domain given only unlabeled data that shifts gradually in distribution towards a target domain. We prove the first non-vacuous upper bound on the error of self-training with gradual shifts, under settings where directly adapting to the target domain can result in unbounded error. The theoretical analysis leads to algorithmic insights, highlighting that regularization and label sharpening are essential even when we have infinite data, and suggesting that self-training works particularly well for shifts with small Wasserstein-infinity distance. Leveraging the gradual shift structure leads to higher accuracies on a rotating MNIST dataset and a realistic Portraits dataset.

Benchmarks

BenchmarkMethodologyMetrics
unsupervised-domain-adaptation-on-portraitsGradual Self-Training (Small Conv)
Accuracy (%): 83.8

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp