HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Embedding Propagation: Smoother Manifold for Few-Shot Classification

Pau Rodríguez Issam Laradji Alexandre Drouin Alexandre Lacoste

Embedding Propagation: Smoother Manifold for Few-Shot Classification

Abstract

Few-shot classification is challenging because the data distribution of the training set can be widely different to the test set as their classes are disjoint. This distribution shift often results in poor generalization. Manifold smoothing has been shown to address the distribution shift problem by extending the decision boundaries and reducing the noise of the class representations. Moreover, manifold smoothness is a key factor for semi-supervised learning and transductive learning algorithms. In this work, we propose to use embedding propagation as an unsupervised non-parametric regularizer for manifold smoothing in few-shot classification. Embedding propagation leverages interpolations between the extracted features of a neural network based on a similarity graph. We empirically show that embedding propagation yields a smoother embedding manifold. We also show that applying embedding propagation to a transductive classifier achieves new state-of-the-art results in mini-Imagenet, tiered-Imagenet, Imagenet-FS, and CUB. Furthermore, we show that embedding propagation consistently improves the accuracy of the models in multiple semi-supervised learning scenarios by up to 16\% points. The proposed embedding propagation operation can be easily integrated as a non-parametric layer into a neural network. We provide the training code and usage examples at https://github.com/ElementAI/embedding-propagation.

Code Repositories

ElementAI/embedding-propagation
Official
pytorch
Mentioned in GitHub

Benchmarks

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp