HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Generative Latent Implicit Conditional Optimization when Learning from Small Sample

Idan Azuri; Daphna Weinshall

Generative Latent Implicit Conditional Optimization when Learning from Small Sample

Abstract

We revisit the long-standing problem of learning from a small sample, to which end we propose a novel method called GLICO (Generative Latent Implicit Conditional Optimization). GLICO learns a mapping from the training examples to a latent space and a generator that generates images from vectors in the latent space. Unlike most recent works, which rely on access to large amounts of unlabeled data, GLICO does not require access to any additional data other than the small set of labeled points. In fact, GLICO learns to synthesize completely new samples for every class using as little as 5 or 10 examples per class, with as few as 10 such classes without imposing any prior. GLICO is then used to augment the small training set while training a classifier on the small sample. To this end, our proposed method samples the learned latent space using spherical interpolation, and generates new examples using the trained generator. Empirical results show that the new sampled set is diverse enough, leading to improvement in image classification in comparison with the state of the art, when trained on small samples obtained from CIFAR-10, CIFAR-100, and CUB-200.

Code Repositories

IdanAzuri/glico-learning-small-sample
Official
pytorch
Mentioned in GitHub

Benchmarks

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp