HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

From Generalized zero-shot learning to long-tail with class descriptors

Dvir Samuel; Yuval Atzmon; Gal Chechik

From Generalized zero-shot learning to long-tail with class descriptors

Abstract

Real-world data is predominantly unbalanced and long-tailed, but deep models struggle to recognize rare classes in the presence of frequent classes. Often, classes can be accompanied by side information like textual descriptions, but it is not fully clear how to use them for learning with unbalanced long-tail data. Such descriptions have been mostly used in (Generalized) Zero-shot learning (ZSL), suggesting that ZSL with class descriptions may also be useful for long-tail distributions. We describe DRAGON, a late-fusion architecture for long-tail learning with class descriptors. It learns to (1) correct the bias towards head classes on a sample-by-sample basis; and (2) fuse information from class-descriptions to improve the tail-class accuracy. We also introduce new benchmarks CUB-LT, SUN-LT, AWA-LT for long-tail learning with class-descriptions, building on existing learning-with-attributes datasets and a version of Imagenet-LT with class descriptors. DRAGON outperforms state-of-the-art models on the new benchmark. It is also a new SoTA on existing benchmarks for GFSL with class descriptors (GFSL-d) and standard (vision-only) long-tailed learning ImageNet-LT, CIFAR-10, 100, and Places365.

Code Repositories

dvirsamuel/DRAGON
Official
tf
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
generalized-few-shot-learning-on-awa2DRAGON
Per-Class Accuracy (1-shot): 67.1
Per-Class Accuracy (10-shots): 81.9
Per-Class Accuracy (2-shots): 69.1
Per-Class Accuracy (20-shots): 83.3
Per-Class Accuracy (5-shots): 76.7
generalized-few-shot-learning-on-sunDRAGON
Per-Class Accuracy (1-shot): 41.0
Per-Class Accuracy (10-shots): 48.2
Per-Class Accuracy (2-shots): 43.8
Per-Class Accuracy (5-shots): 46.7
long-tail-learning-on-cifar-10-lt-r-10smDRAGON
Error Rate: 11.84
long-tail-learning-on-cifar-10-lt-r-100smDRAGON
Error Rate: 20.37
long-tail-learning-on-cifar-100-lt-r-10smDRAGON
Error Rate: 41.23
long-tail-learning-on-cifar-100-lt-r-100smDRAGON
Error Rate: 56.50
long-tail-learning-on-imagenet-ltsmDRAGON
Top-1 Accuracy: 42.0
long-tail-learning-on-places-ltsmDRAGON
Top-1 Accuracy: 38.1
long-tail-learning-with-class-descriptors-onDRAGON + Bal'Loss
Long-Tailed Accuracy: 66.5
Per-Class Accuracy: 60.1
long-tail-learning-with-class-descriptors-onDRAGON
Long-Tailed Accuracy: 67.7
Per-Class Accuracy: 57.8
long-tail-learning-with-class-descriptors-on-1DRAGON + Bal'Loss
Long-Tailed Accuracy: 38.5
Per-Class Accuracy: 36.1
long-tail-learning-with-class-descriptors-on-1DRAGON
Long-Tailed Accuracy: 40.4
Per-Class Accuracy: 34.8
long-tail-learning-with-class-descriptors-on-2DRAGON + Bal'Loss
Long-Tailed Accuracy: 92.2
Per-Class Accuracy: 76.2
long-tail-learning-with-class-descriptors-on-2DRAGON
Long-Tailed Accuracy: 94.1
Per-Class Accuracy: 74.1
long-tail-learning-with-class-descriptors-on-3DRAGON + Bal'Loss
Per-Class Accuracy: 53.5
long-tail-learning-with-class-descriptors-on-3DRAGON
Per-Class Accuracy: 51.2

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp