HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior

Jinshan Pan Haoran Bai Jinhui Tang

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior

Abstract

We present a simple and effective deep convolutional neural network (CNN) model for video deblurring. The proposed algorithm mainly consists of optical flow estimation from intermediate latent frames and latent frame restoration steps. It first develops a deep CNN model to estimate optical flow from intermediate latent frames and then restores the latent frames based on the estimated optical flow. To better explore the temporal information from videos, we develop a temporal sharpness prior to constrain the deep CNN model to help the latent frame restoration. We develop an effective cascaded training approach and jointly train the proposed CNN model in an end-to-end manner. We show that exploring the domain knowledge of video deblurring is able to make the deep CNN model more compact and efficient. Extensive experimental results show that the proposed algorithm performs favorably against state-of-the-art methods on the benchmark datasets as well as real-world videos.

Code Repositories

csbhr/CDVD-TSP
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
deblurring-on-beam-splitter-deblurring-bsdCDVD-TSP
PSNR: 31.58
deblurring-on-dvdCDVD-TSP
PSNR: 32.13
deblurring-on-goproCDVD-TSP
PSNR: 31.67
SSIM: 0.9279

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp