HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Cross-lingual Entity Alignment with Incidental Supervision

Muhao Chen Weijia Shi Ben Zhou Dan Roth

Cross-lingual Entity Alignment with Incidental Supervision

Abstract

Much research effort has been put to multilingual knowledge graph (KG) embedding methods to address the entity alignment task, which seeks to match entities in different languagespecific KGs that refer to the same real-world object. Such methods are often hindered by the insufficiency of seed alignment provided between KGs. Therefore, we propose an incidentally supervised model, JEANS , which jointly represents multilingual KGs and text corpora in a shared embedding scheme, and seeks to improve entity alignment with incidental supervision signals from text. JEANS first deploys an entity grounding process to combine each KG with the monolingual text corpus. Then, two learning processes are conducted: (i) an embedding learning process to encode the KG and text of each language in one embedding space, and (ii) a selflearning based alignment learning process to iteratively induce the matching of entities and that of lexemes between embeddings. Experiments on benchmark datasets show that JEANS leads to promising improvement on entity alignment with incidental supervision, and significantly outperforms state-of-the-art methods that solely rely on internal information of KGs.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
entity-alignment-on-dbp15k-zh-enJEANS
Hits@1: 0.719

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Cross-lingual Entity Alignment with Incidental Supervision | Papers | HyperAI