HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

H3DNet: 3D Object Detection Using Hybrid Geometric Primitives

Zaiwei Zhang Bo Sun Haitao Yang Qixing Huang

H3DNet: 3D Object Detection Using Hybrid Geometric Primitives

Abstract

We introduce H3DNet, which takes a colorless 3D point cloud as input and outputs a collection of oriented object bounding boxes (or BB) and their semantic labels. The critical idea of H3DNet is to predict a hybrid set of geometric primitives, i.e., BB centers, BB face centers, and BB edge centers. We show how to convert the predicted geometric primitives into object proposals by defining a distance function between an object and the geometric primitives. This distance function enables continuous optimization of object proposals, and its local minimums provide high-fidelity object proposals. H3DNet then utilizes a matching and refinement module to classify object proposals into detected objects and fine-tune the geometric parameters of the detected objects. The hybrid set of geometric primitives not only provides more accurate signals for object detection than using a single type of geometric primitives, but it also provides an overcomplete set of constraints on the resulting 3D layout. Therefore, H3DNet can tolerate outliers in predicted geometric primitives. Our model achieves state-of-the-art 3D detection results on two large datasets with real 3D scans, ScanNet and SUN RGB-D.

Code Repositories

zaiweizhang/H3DNet
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
3d-object-detection-on-arkitscenesH3DNet
mAP@0.25: 38.3
3d-object-detection-on-scannetv2H3DNet
mAP@0.25: 67.2
mAP@0.5: 48.1
3d-object-detection-on-sun-rgbd-valH3DNet
mAP@0.25: 60.1
mAP@0.5: 39.0

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp