HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Evidence-Aware Inferential Text Generation with Vector Quantised Variational AutoEncoder

Daya Guo Duyu Tang Nan Duan Jian Yin Daxin Jiang Ming Zhou

Evidence-Aware Inferential Text Generation with Vector Quantised Variational AutoEncoder

Abstract

Generating inferential texts about an event in different perspectives requires reasoning over different contexts that the event occurs. Existing works usually ignore the context that is not explicitly provided, resulting in a context-independent semantic representation that struggles to support the generation. To address this, we propose an approach that automatically finds evidence for an event from a large text corpus, and leverages the evidence to guide the generation of inferential texts. Our approach works in an encoder-decoder manner and is equipped with a Vector Quantised-Variational Autoencoder, where the encoder outputs representations from a distribution over discrete variables. Such discrete representations enable automatically selecting relevant evidence, which not only facilitates evidence-aware generation, but also provides a natural way to uncover rationales behind the generation. Our approach provides state-of-the-art performance on both Event2Mind and ATOMIC datasets. More importantly, we find that with discrete representations, our model selectively uses evidence to generate different inferential texts.

Code Repositories

microsoft/EA-VQ-VAE
Official
pytorch

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp