Command Palette
Search for a command to run...
Jing Zhang; Deng-Ping Fan; Yuchao Dai; Saeed Anwar; Fatemeh Saleh; Sadegh Aliakbarian; Nick Barnes

Abstract
We propose the first stochastic framework to employ uncertainty for RGB-D saliency detection by learning from the data labeling process. Existing RGB-D saliency detection models treat this task as a point estimation problem by predicting a single saliency map following a deterministic learning pipeline. We argue that, however, the deterministic solution is relatively ill-posed. Inspired by the saliency data labeling process, we propose a generative architecture to achieve probabilistic RGB-D saliency detection which utilizes a latent variable to model the labeling variations. Our framework includes two main models: 1) a generator model, which maps the input image and latent variable to stochastic saliency prediction, and 2) an inference model, which gradually updates the latent variable by sampling it from the true or approximate posterior distribution. The generator model is an encoder-decoder saliency network. To infer the latent variable, we introduce two different solutions: i) a Conditional Variational Auto-encoder with an extra encoder to approximate the posterior distribution of the latent variable; and ii) an Alternating Back-Propagation technique, which directly samples the latent variable from the true posterior distribution. Qualitative and quantitative results on six challenging RGB-D benchmark datasets show our approach's superior performance in learning the distribution of saliency maps. The source code is publicly available via our project page: https://github.com/JingZhang617/UCNet.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| rgb-d-salient-object-detection-on-des | UCNet-ABP | Average MAE: 0.016 S-Measure: 94.0 |
| rgb-d-salient-object-detection-on-des | UCNet-CVAE | Average MAE: 0.016 S-Measure: 93.7 |
| rgb-d-salient-object-detection-on-lfsd | UCNet-ABP | Average MAE: 0.065 S-Measure: 86.6 |
| rgb-d-salient-object-detection-on-lfsd | UCNet-CVAE | Average MAE: 0.065 S-Measure: 86.8 |
| rgb-d-salient-object-detection-on-nju2k | UCNet-CVAE | Average MAE: 0.039 S-Measure: 90.2 |
| rgb-d-salient-object-detection-on-nju2k | UCNet-ABP | Average MAE: 0.039 S-Measure: 90.0 |
| rgb-d-salient-object-detection-on-nlpr | UCNet-CAVE | Average MAE: 0.025 S-Measure: 91.7 |
| rgb-d-salient-object-detection-on-nlpr | UCNet-ABP | Average MAE: 0.024 S-Measure: 91.9 |
| rgb-d-salient-object-detection-on-sip | UCNet-CVAE | Average MAE: 0.045 S-Measure: 88.3 |
| rgb-d-salient-object-detection-on-sip | UCNet-ABP | Average MAE: 0.049 S-Measure: 87.6 |
| rgb-d-salient-object-detection-on-stere | UCNet-CVAE | Average MAE: 0.039 S-Measure: 89.8 |
| rgb-d-salient-object-detection-on-stere | UCNet-ABP | Average MAE: 0.037 S-Measure: 90.4 |
| salient-object-detection-on-dut-omron | UCNet-ABP | MAE: 0.050 S-Measure: 0.843 |
| salient-object-detection-on-dut-omron | UCNet-CVAE | MAE: 0.051 S-Measure: 0.839 |
| salient-object-detection-on-duts-te | UCNet-CVAE | MAE: 0.034 S-Measure: 0.888 mean E-Measure: 0.927 mean F-Measure: 0.860 |
| salient-object-detection-on-duts-te | UCNet-ABP | MAE: 0.034 S-Measure: 0.890 mean E-Measure: 0.931 mean F-Measure: 0.864 |
| salient-object-detection-on-ecssd | UCNet-CVAE | MAE: 0.035 S-Measure: 0.921 |
| salient-object-detection-on-hku-is | UCNet-CVAE | MAE: 0.026 S-Measure: 0.921 |
| salient-object-detection-on-hku-is | UCNet-ABP | MAE: 0.027 S-Measure: 0.917 |
| salient-object-detection-on-soc | UCNet-APB | Average MAE: 0.091 S-Measure: 0.842 mean E-Measure: 0.868 |
| salient-object-detection-on-soc | UCNet-CVAE | Average MAE: 0.089 S-Measure: 0.849 mean E-Measure: 0.872 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.