Command Palette
Search for a command to run...
MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution
Armin Mehri; Parichehr B.Ardakani; Angel D.Sappa

Abstract
Lightweight super resolution networks have extremely importance for real-world applications. In recent years several SR deep learning approaches with outstanding achievement have been introduced by sacrificing memory and computational cost. To overcome this problem, a novel lightweight super resolution network is proposed, which improves the SOTA performance in lightweight SR and performs roughly similar to computationally expensive networks. Multi-Path Residual Network designs with a set of Residual concatenation Blocks stacked with Adaptive Residual Blocks: ($i$) to adaptively extract informative features and learn more expressive spatial context information; ($ii$) to better leverage multi-level representations before up-sampling stage; and ($iii$) to allow an efficient information and gradient flow within the network. The proposed architecture also contains a new attention mechanism, Two-Fold Attention Module, to maximize the representation ability of the model. Extensive experiments show the superiority of our model against other SOTA SR approaches.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| video-deraining-on-vrds | MPRNet | PSNR: 29.53 SSIM: 0.9175 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.