HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification

Soumya Chatterjee Ayush Maheshwari Ganesh Ramakrishnan Saketha Nath Jagaralpudi

Joint Learning of Hyperbolic Label Embeddings for Hierarchical Multi-label Classification

Abstract

We consider the problem of multi-label classification where the labels lie in a hierarchy. However, unlike most existing works in hierarchical multi-label classification, we do not assume that the label-hierarchy is known. Encouraged by the recent success of hyperbolic embeddings in capturing hierarchical relations, we propose to jointly learn the classifier parameters as well as the label embeddings. Such a joint learning is expected to provide a twofold advantage: i) the classifier generalizes better as it leverages the prior knowledge of existence of a hierarchy over the labels, and ii) in addition to the label co-occurrence information, the label-embedding may benefit from the manifold structure of the input datapoints, leading to embeddings that are more faithful to the label hierarchy. We propose a novel formulation for the joint learning and empirically evaluate its efficacy. The results show that the joint learning improves over the baseline that employs label co-occurrence based pre-trained hyperbolic embeddings. Moreover, the proposed classifiers achieve state-of-the-art generalization on standard benchmarks. We also present evaluation of the hyperbolic embeddings obtained by joint learning and show that they represent the hierarchy more accurately than the other alternatives.

Code Repositories

soumyac1999/hyperbolic-label-emb-for-hmc
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
multi-label-text-classification-on-rcv1HiddeN
Macro-F1: 47.3
Micro-F1: 79.3

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp