Command Palette
Search for a command to run...
Rafael Padilha; Tawfiq Salem; Scott Workman; Fernanda A. Andaló; Anderson Rocha; Nathan Jacobs

Abstract
Most pictures shared online are accompanied by temporal metadata (i.e., the day and time they were taken), which makes it possible to associate an image content with real-world events. Maliciously manipulating this metadata can convey a distorted version of reality. In this work, we present the emerging problem of detecting timestamp manipulation. We propose an end-to-end approach to verify whether the purported time of capture of an outdoor image is consistent with its content and geographic location. We consider manipulations done in the hour and/or month of capture of a photograph. The central idea is the use of supervised consistency verification, in which we predict the probability that the image content, capture time, and geographical location are consistent. We also include a pair of auxiliary tasks, which can be used to explain the network decision. Our approach improves upon previous work on a large benchmark dataset, increasing the classification accuracy from 59.0% to 81.1%. We perform an ablation study that highlights the importance of various components of the method, showing what types of tampering are detectable using our approach. Finally, we demonstrate how the proposed method can be employed to estimate a possible time-of-capture in scenarios in which the timestamp is missing from the metadata.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| temporal-metadata-manipulation-detection-on | DenseNet-121 - G, t, l, S (TA) | 2-Class Accuracy: 81.1 AUC: 0.885 |
| temporal-metadata-manipulation-detection-on-1 | DenseNet-121 - G, t, l, S (TA) | 2-Class Accuracy: 67.9 AUC: 0.749 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.