HyperAIHyperAI

Command Palette

Search for a command to run...

Stepwise Goal-Driven Networks for Trajectory Prediction

Chuhua Wang Yuchen Wang Mingze Xu David J. Crandall

Abstract

We propose to predict the future trajectories of observed agents (e.g., pedestrians or vehicles) by estimating and using their goals at multiple time scales. We argue that the goal of a moving agent may change over time, and modeling goals continuously provides more accurate and detailed information for future trajectory estimation. To this end, we present a recurrent network for trajectory prediction, called Stepwise Goal-Driven Network (SGNet). Unlike prior work that models only a single, long-term goal, SGNet estimates and uses goals at multiple temporal scales. In particular, it incorporates an encoder that captures historical information, a stepwise goal estimator that predicts successive goals into the future, and a decoder that predicts future trajectory. We evaluate our model on three first-person traffic datasets (HEV-I, JAAD, and PIE) as well as on three bird's eye view datasets (NuScenes, ETH, and UCY), and show that our model achieves state-of-the-art results on all datasets. Code has been made available at: https://github.com/ChuhuaW/SGNet.pytorch.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp