HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs

Pei Ke; Haozhe Ji; Yu Ran; Xin Cui; Liwei Wang; Linfeng Song; Xiaoyan Zhu; Minlie Huang

JointGT: Graph-Text Joint Representation Learning for Text Generation from Knowledge Graphs

Abstract

Existing pre-trained models for knowledge-graph-to-text (KG-to-text) generation simply fine-tune text-to-text pre-trained models such as BART or T5 on KG-to-text datasets, which largely ignore the graph structure during encoding and lack elaborate pre-training tasks to explicitly model graph-text alignments. To tackle these problems, we propose a graph-text joint representation learning model called JointGT. During encoding, we devise a structure-aware semantic aggregation module which is plugged into each Transformer layer to preserve the graph structure. Furthermore, we propose three new pre-training tasks to explicitly enhance the graph-text alignment including respective text / graph reconstruction, and graph-text alignment in the embedding space via Optimal Transport. Experiments show that JointGT obtains new state-of-the-art performance on various KG-to-text datasets.

Code Repositories

thu-coai/JointGT
Official
pytorch

Benchmarks

BenchmarkMethodologyMetrics
kg-to-text-generation-on-pathquestionJointGT (BART)
BLEU: 65.89
METEOR: 48.25
ROUGE: 78.87
kg-to-text-generation-on-pathquestionT5
BLEU: 58.95
METEOR: 44.72
ROUGE: 76.58
kg-to-text-generation-on-pathquestionBART
BLEU: 63.74
METEOR: 47.23
ROUGE: 77.76
kg-to-text-generation-on-pathquestionJointGT (T5)
BLEU: 60.45
METEOR: 45.38
ROUGE: 77.59
kg-to-text-generation-on-webnlg-2-0JointGT (T5)
BLEU: 66.14
METEOR: 47.25
ROUGE: 75.91
kg-to-text-generation-on-webnlg-2-0T5
BLEU: 64.42
METEOR: 46.58
ROUGE: 74.77
kg-to-text-generation-on-webnlg-2-0JointGT (BART)
BLEU: 65.92
METEOR: 47.15
ROUGE: 76.10
kg-to-text-generation-on-webnlg-2-0BART
BLEU: 64.55
METEOR: 46.51
ROUGE: 75.13
kg-to-text-generation-on-webnlg-2-0-1JointGT (BART)
BLEU: 58.55
METEOR: 45.01
ROUGE: 72.31
kg-to-text-generation-on-webnlg-2-0-1JointGT (T5)
BLEU: 61.01
METEOR: 46.32
ROUGE: 73.57
kg-to-text-generation-on-webnlg-2-0-1BART
BLEU: 56.65
METEOR: 44.51
ROUGE: 70.94
kg-to-text-generation-on-webnlg-2-0-1T5
BLEU: 58.66
METEOR: 46.04
ROUGE: 73.06
kg-to-text-generation-on-webquestionsT5
BLEU: 28.78
METEOR: 30.55
ROUGE: 55.12
kg-to-text-generation-on-webquestionsBART
BLEU: 29.61
METEOR: 31.48
ROUGE: 55.42
kg-to-text-generation-on-webquestionsJointGT (BART)
BLEU: 30.02
METEOR: 32.05
ROUGE: 55.6
kg-to-text-generation-on-webquestionsJointGT (T5)
BLEU: 28.95
METEOR: 31.29
ROUGE: 54.47

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp