HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation

Sanghun Jung Jungsoo Lee Daehoon Gwak Sungha Choi Jaegul Choo

Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation

Abstract

Identifying unexpected objects on roads in semantic segmentation (e.g., identifying dogs on roads) is crucial in safety-critical applications. Existing approaches use images of unexpected objects from external datasets or require additional training (e.g., retraining segmentation networks or training an extra network), which necessitate a non-trivial amount of labor intensity or lengthy inference time. One possible alternative is to use prediction scores of a pre-trained network such as the max logits (i.e., maximum values among classes before the final softmax layer) for detecting such objects. However, the distribution of max logits of each predicted class is significantly different from each other, which degrades the performance of identifying unexpected objects in urban-scene segmentation. To address this issue, we propose a simple yet effective approach that standardizes the max logits in order to align the different distributions and reflect the relative meanings of max logits within each predicted class. Moreover, we consider the local regions from two different perspectives based on the intuition that neighboring pixels share similar semantic information. In contrast to previous approaches, our method does not utilize any external datasets or require additional training, which makes our method widely applicable to existing pre-trained segmentation models. Such a straightforward approach achieves a new state-of-the-art performance on the publicly available Fishyscapes Lost & Found leaderboard with a large margin. Our code is publicly available at this $\href{https://github.com/shjung13/Standardized-max-logits}{link}$.

Code Repositories

shjung13/standardized-max-logits
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
anomaly-detection-on-fishyscapes-1SML
AP: 53.11
FPR95: 19.64
anomaly-detection-on-fishyscapes-l-fSML
AP: 36.55
FPR95: 14.53
anomaly-detection-on-lost-and-foundSML
AP: 25.89
FPR: 44.48
anomaly-detection-on-road-anomalySML
AP: 25.82
FPR95: 49.74
semantic-segmentation-on-cityscapes-valSML
mIoU: 80.33

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp