Command Palette
Search for a command to run...
Ben Usman; Andrea Tagliasacchi; Kate Saenko; Avneesh Sud

Abstract
In the era of deep learning, human pose estimation from multiple cameras with unknown calibration has received little attention to date. We show how to train a neural model to perform this task with high precision and minimal latency overhead. The proposed model takes into account joint location uncertainty due to occlusion from multiple views, and requires only 2D keypoint data for training. Our method outperforms both classical bundle adjustment and weakly-supervised monocular 3D baselines on the well-established Human3.6M dataset, as well as the more challenging in-the-wild Ski-Pose PTZ dataset.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| 3d-human-pose-estimation-on-human36m | MetaPose (S1+S2) | Average MPJPE (mm): 49 |
| 3d-human-pose-estimation-on-skipose | MetaPose (S1+S2) | MPJPE: 53 P-MPJPE: 42 |
| 3d-human-pose-estimation-on-skipose | MetaPose (S1+IR) | MPJPE: 54 P-MPJPE: 30 |
| weakly-supervised-3d-human-pose-estimation-on | MetaPose (S1+S2/SS) | Average MPJPE (mm): 56 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.