HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

ViCE: Improving Dense Representation Learning by Superpixelization and Contrasting Cluster Assignment

Robin Karlsson; Tomoki Hayashi; Keisuke Fujii; Alexander Carballo; Kento Ohtani; Kazuya Takeda

ViCE: Improving Dense Representation Learning by Superpixelization and Contrasting Cluster Assignment

Abstract

Recent self-supervised models have demonstrated equal or better performance than supervised methods, opening for AI systems to learn visual representations from practically unlimited data. However, these methods are typically classification-based and thus ineffective for learning high-resolution feature maps that preserve precise spatial information. This work introduces superpixels to improve self-supervised learning of dense semantically rich visual concept embeddings. Decomposing images into a small set of visually coherent regions reduces the computational complexity by $\mathcal{O}(1000)$ while preserving detail. We experimentally show that contrasting over regions improves the effectiveness of contrastive learning methods, extends their applicability to high-resolution images, improves overclustering performance, superpixels are better than grids, and regional masking improves performance. The expressiveness of our dense embeddings is demonstrated by improving the SOTA unsupervised semantic segmentation benchmark on Cityscapes, and for convolutional models on COCO.

Code Repositories

robin-karlsson0/vice
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
unsupervised-semantic-segmentation-onViCE
Accuracy: 84.3
mIoU: 25.2
unsupervised-semantic-segmentation-on-coco-7ViCE
Accuracy: 64.8
mIoU: 21.77

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp