HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Domain Prompt Learning for Efficiently Adapting CLIP to Unseen Domains

Xin Zhang Shixiang Shane Gu Yutaka Matsuo Yusuke Iwasawa

Domain Prompt Learning for Efficiently Adapting CLIP to Unseen Domains

Abstract

Domain generalization (DG) is a difficult transfer learning problem aiming to learn a generalizable model for unseen domains. Recent foundation models (FMs) are robust to many distribution shifts and, therefore, should substantially improve the performance of DG. In this work, we study generic ways to adopt CLIP, a Visual-Language Foundation Model, for DG problems in image classification. While ERM greatly improves the accuracy with bigger backbones and training datasets using standard DG benchmarks, fine-tuning FMs is not practical in many real-world situations. We propose Domain Prompt Learning (DPL) as a novel approach for domain inference in the form of conditional prompt generation. DPL achieved a significant accuracy improvement with only training a lightweight prompt generator (a three-layer MLP), whose parameter is of equivalent scale to the classification projector in the previous DG literature. Combining \dplshort~with CLIP provides surprising performance, raising the accuracy of zero-shot CLIP from 73.7% to 79.3% on several standard datasets, namely PACS, VLCS, OfficeHome, and TerraIncognita. We hope the simplicity and success of our approach lead to broader adoption and analysis of foundation models in the domain generalization field. Our code is available at https://github.com/shogi880/DPLCLIP.

Code Repositories

shogi880/DPLCLIP
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
transfer-learning-on-office-homeAPCLIP
Accuracy: 84.2

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp