HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

F2DNet: Fast Focal Detection Network for Pedestrian Detection

Abdul Hannan Khan Mohsin Munir Ludger van Elst Andreas Dengel

F2DNet: Fast Focal Detection Network for Pedestrian Detection

Abstract

Two-stage detectors are state-of-the-art in object detection as well as pedestrian detection. However, the current two-stage detectors are inefficient as they do bounding box regression in multiple steps i.e. in region proposal networks and bounding box heads. Also, the anchor-based region proposal networks are computationally expensive to train. We propose F2DNet, a novel two-stage detection architecture which eliminates redundancy of current two-stage detectors by replacing the region proposal network with our focal detection network and bounding box head with our fast suppression head. We benchmark F2DNet on top pedestrian detection datasets, thoroughly compare it against the existing state-of-the-art detectors and conduct cross dataset evaluation to test the generalizability of our model to unseen data. Our F2DNet achieves 8.7\%, 2.2\%, and 6.1\% MR-2 on City Persons, Caltech Pedestrian, and Euro City Person datasets respectively when trained on a single dataset and reaches 20.4\% and 26.2\% MR-2 in heavy occlusion setting of Caltech Pedestrian and City Persons datasets when using progressive fine-tunning. Furthermore, F2DNet have significantly lesser inference time compared to the current state-of-the-art. Code and trained models will be available at https://github.com/AbdulHannanKhan/F2DNet.

Code Repositories

hasanirtiza/Pedestron
pytorch
Mentioned in GitHub
abdulhannankhan/f2dnet
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
pedestrian-detection-on-caltechF2DNet (extra data)
Heavy MR^-2: 20.42
Reasonable Miss Rate: 1.71
pedestrian-detection-on-caltechF2DNet
Heavy MR^-2: 38.7
Reasonable Miss Rate: 2.2
pedestrian-detection-on-citypersonsF2DNet (extra data)
Heavy MR^-2: 26.23
Reasonable MR^-2: 7.8
Small MR^-2: 9.43
Test Time: 0.44s/img
pedestrian-detection-on-citypersonsF2DNet
Heavy MR^-2: 32.6
Reasonable MR^-2: 8.7
Small MR^-2: 11.3
Test Time: 0.44s/img

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp