HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Real-time Object Detection for Streaming Perception

Jinrong Yang Songtao Liu Zeming Li Xiaoping Li Jian Sun

Real-time Object Detection for Streaming Perception

Abstract

Autonomous driving requires the model to perceive the environment and (re)act within a low latency for safety. While past works ignore the inevitable changes in the environment after processing, streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception. In this paper, instead of searching trade-offs between accuracy and speed like previous works, we point out that endowing real-time models with the ability to predict the future is the key to dealing with this problem. We build a simple and effective framework for streaming perception. It equips a novel DualFlow Perception module (DFP), which includes dynamic and static flows to capture the moving trend and basic detection feature for streaming prediction. Further, we introduce a Trend-Aware Loss (TAL) combined with a trend factor to generate adaptive weights for objects with different moving speeds. Our simple method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline, validating its effectiveness. Our code will be made available at https://github.com/yancie-yjr/StreamYOLO.

Code Repositories

yancie-yjr/StreamYOLO
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
real-time-object-detection-on-argoverse-hd-4StreamYOLO
sAP: 42.3

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp