HyperAIHyperAI

Command Palette

Search for a command to run...

Video Polyp Segmentation: A Deep Learning Perspective

Ge-Peng Ji†1 Guobao Xiao†2 Yu-Cheng Chou†3 Deng-Ping Fan‡4 Kai Zhao5 Geng Chen6 Luc Van Gool4

Abstract

We present the first comprehensive video polyp segmentation (VPS) study in the deep learning era. Over the years, developments in VPS are not moving forward with ease due to the lack of large-scale fine-grained segmentation annotations. To address this issue, we first introduce a high-quality frame-by-frame annotated VPS dataset, named SUN-SEG, which contains 158,690 colonoscopy frames from the well-known SUN-database. We provide additional annotations with diverse types, i.e., attribute, object mask, boundary, scribble, and polygon. Second, we design a simple but efficient baseline, dubbed PNS+, consisting of a global encoder, a local encoder, and normalized self-attention (NS) blocks. The global and local encoders receive an anchor frame and multiple successive frames to extract long-term and short-term spatial-temporal representations, which are then progressively updated by two NS blocks. Extensive experiments show that PNS+ achieves the best performance and real-time inference speed (170fps), making it a promising solution for the VPS task. Third, we extensively evaluate 13 representative polyp/object segmentation models on our SUN-SEG dataset and provide attribute-based comparisons. Finally, we discuss several open issues and suggest possible research directions for the VPS community.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp