HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Part-based Pseudo Label Refinement for Unsupervised Person Re-identification

Yoonki Cho Woo Jae Kim Seunghoon Hong Sung-Eui Yoon

Part-based Pseudo Label Refinement for Unsupervised Person Re-identification

Abstract

Unsupervised person re-identification (re-ID) aims at learning discriminative representations for person retrieval from unlabeled data. Recent techniques accomplish this task by using pseudo-labels, but these labels are inherently noisy and deteriorate the accuracy. To overcome this problem, several pseudo-label refinement methods have been proposed, but they neglect the fine-grained local context essential for person re-ID. In this paper, we propose a novel Part-based Pseudo Label Refinement (PPLR) framework that reduces the label noise by employing the complementary relationship between global and part features. Specifically, we design a cross agreement score as the similarity of k-nearest neighbors between feature spaces to exploit the reliable complementary relationship. Based on the cross agreement, we refine pseudo-labels of global features by ensembling the predictions of part features, which collectively alleviate the noise in global feature clustering. We further refine pseudo-labels of part features by applying label smoothing according to the suitability of given labels for each part. Thanks to the reliable complementary information provided by the cross agreement score, our PPLR effectively reduces the influence of noisy labels and learns discriminative representations with rich local contexts. Extensive experimental results on Market-1501 and MSMT17 demonstrate the effectiveness of the proposed method over the state-of-the-art performance. The code is available at https://github.com/yoonkicho/PPLR.

Code Repositories

yoonkicho/pplr
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
unsupervised-person-re-identification-on-12PPLR
Rank-1: 73.3
Rank-10: 86.5
Rank-5: 83.5
mAP: 42.2
unsupervised-person-re-identification-on-4PPLR
MAP: 84.4
Rank-1: 94.3
Rank-10: 98.6
Rank-5: 97.8

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp