Command Palette
Search for a command to run...
Video K-Net: A Simple, Strong, and Unified Baseline for Video Segmentation
Xiangtai Li; Wenwei Zhang; Jiangmiao Pang; Kai Chen; Guangliang Cheng; Yunhai Tong; Chen Change Loy

Abstract
This paper presents Video K-Net, a simple, strong, and unified framework for fully end-to-end video panoptic segmentation. The method is built upon K-Net, a method that unifies image segmentation via a group of learnable kernels. We observe that these learnable kernels from K-Net, which encode object appearances and contexts, can naturally associate identical instances across video frames. Motivated by this observation, Video K-Net learns to simultaneously segment and track "things" and "stuff" in a video with simple kernel-based appearance modeling and cross-temporal kernel interaction. Despite the simplicity, it achieves state-of-the-art video panoptic segmentation results on Citscapes-VPS, KITTI-STEP, and VIPSeg without bells and whistles. In particular, on KITTI-STEP, the simple method can boost almost 12\% relative improvements over previous methods. On VIPSeg, Video K-Net boosts almost 15\% relative improvements and results in 39.8 % VPQ. We also validate its generalization on video semantic segmentation, where we boost various baselines by 2\% on the VSPW dataset. Moreover, we extend K-Net into clip-level video framework for video instance segmentation, where we obtain 40.5% mAP for ResNet50 backbone and 54.1% mAP for Swin-base on YouTube-2019 validation set. We hope this simple, yet effective method can serve as a new, flexible baseline in unified video segmentation design. Both code and models are released at https://github.com/lxtGH/Video-K-Net.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| video-instance-segmentation-on-youtube-vis-1 | Video K-Net (Swin-Base) | AP50: 79.0 AP75: 59.6 AR1: 49.7 AR10: 59.9 mask AP: 54.1 |
| video-panoptic-segmentation-on-cityscapes-vps | Video K-Net (Swin-B) | VPQ: 62.2 VPQ (stuff): 71.8 VPQ (thing): 49.8 |
| video-panoptic-segmentation-on-kitti-step | Video K-Net (Swin-L) | AQ: 73.0 SQ: 75.0 STQ: 74.0 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.