Command Palette
Search for a command to run...
Hao Zhu; Wayne Wu; Wentao Zhu; Liming Jiang; Siwei Tang; Li Zhang; Ziwei Liu; Chen Change Loy

Abstract
Large-scale datasets have played indispensable roles in the recent success of face generation/editing and significantly facilitated the advances of emerging research fields. However, the academic community still lacks a video dataset with diverse facial attribute annotations, which is crucial for the research on face-related videos. In this work, we propose a large-scale, high-quality, and diverse video dataset with rich facial attribute annotations, named the High-Quality Celebrity Video Dataset (CelebV-HQ). CelebV-HQ contains 35,666 video clips with the resolution of 512x512 at least, involving 15,653 identities. All clips are labeled manually with 83 facial attributes, covering appearance, action, and emotion. We conduct a comprehensive analysis in terms of age, ethnicity, brightness stability, motion smoothness, head pose diversity, and data quality to demonstrate the diversity and temporal coherence of CelebV-HQ. Besides, its versatility and potential are validated on two representative tasks, i.e., unconditional video generation and video facial attribute editing. Furthermore, we envision the future potential of CelebV-HQ, as well as the new opportunities and challenges it would bring to related research directions. Data, code, and models are publicly available. Project page: https://celebv-hq.github.io.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| unconditional-video-generation-on-celebv-hq | StyleGAN-V | FID: 17.95 FVD: 69.17 |
| unconditional-video-generation-on-celebv-hq | DIGAN | FID: 19.39 FVD: 72.98 |
| unconditional-video-generation-on-celebv-hq | MoCoGAN-HD | FID: 21.55 FVD: 212.41 |
| unconditional-video-generation-on-celebv-hq | VideoGPT | FID: 52.95 FVD: 177.89 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.