HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

PS-NeRV: Patch-wise Stylized Neural Representations for Videos

Yunpeng Bai Chao Dong Cairong Wang

PS-NeRV: Patch-wise Stylized Neural Representations for Videos

Abstract

We study how to represent a video with implicit neural representations (INRs). Classical INRs methods generally utilize MLPs to map input coordinates to output pixels. While some recent works have tried to directly reconstruct the whole image with CNNs. However, we argue that both the above pixel-wise and image-wise strategies are not favorable to video data. Instead, we propose a patch-wise solution, PS-NeRV, which represents videos as a function of patches and the corresponding patch coordinate. It naturally inherits the advantages of image-wise methods, and achieves excellent reconstruction performance with fast decoding speed. The whole method includes conventional modules, like positional embedding, MLPs and CNNs, while also introduces AdaIN to enhance intermediate features. These simple yet essential changes could help the network easily fit high-frequency details. Extensive experiments have demonstrated its effectiveness in several video-related tasks, such as video compression and video inpainting.

Benchmarks

BenchmarkMethodologyMetrics
video-reconstruction-on-uvgPS-NeRV
Average PSNR (dB): 34.61
Model Size (M): 13.07M

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
PS-NeRV: Patch-wise Stylized Neural Representations for Videos | Papers | HyperAI