HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

An End-to-End Multi-Task Learning Model for Image-based Table Recognition

Nam Tuan Ly; Atsuhiro Takasu

An End-to-End Multi-Task Learning Model for Image-based Table Recognition

Abstract

Image-based table recognition is a challenging task due to the diversity of table styles and the complexity of table structures. Most of the previous methods focus on a non-end-to-end approach which divides the problem into two separate sub-problems: table structure recognition; and cell-content recognition and then attempts to solve each sub-problem independently using two separate systems. In this paper, we propose an end-to-end multi-task learning model for image-based table recognition. The proposed model consists of one shared encoder, one shared decoder, and three separate decoders which are used for learning three sub-tasks of table recognition: table structure recognition, cell detection, and cell-content recognition. The whole system can be easily trained and inferred in an end-to-end approach. In the experiments, we evaluate the performance of the proposed model on two large-scale datasets: FinTabNet and PubTabNet. The experiment results show that the proposed model outperforms the state-of-the-art methods in all benchmark datasets.

Code Repositories

Benchmarks

BenchmarkMethodologyMetrics
table-recognition-on-pubtabnetMulti-Task Learning Model
TEDS (all samples): 96.67
TEDS-Struct: 97.88

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp