HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Tube-Link: A Flexible Cross Tube Framework for Universal Video Segmentation

Xiangtai Li; Haobo Yuan; Wenwei Zhang; Guangliang Cheng; Jiangmiao Pang; Chen Change Loy

Tube-Link: A Flexible Cross Tube Framework for Universal Video Segmentation

Abstract

Video segmentation aims to segment and track every pixel in diverse scenarios accurately. In this paper, we present Tube-Link, a versatile framework that addresses multiple core tasks of video segmentation with a unified architecture. Our framework is a near-online approach that takes a short subclip as input and outputs the corresponding spatial-temporal tube masks. To enhance the modeling of cross-tube relationships, we propose an effective way to perform tube-level linking via attention along the queries. In addition, we introduce temporal contrastive learning to instance-wise discriminative features for tube-level association. Our approach offers flexibility and efficiency for both short and long video inputs, as the length of each subclip can be varied according to the needs of datasets or scenarios. Tube-Link outperforms existing specialized architectures by a significant margin on five video segmentation datasets. Specifically, it achieves almost 13% relative improvements on VIPSeg and 4% improvements on KITTI-STEP over the strong baseline Video K-Net. When using a ResNet50 backbone on Youtube-VIS-2019 and 2021, Tube-Link boosts IDOL by 3% and 4%, respectively.

Code Repositories

lxtgh/tube-link
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
video-instance-segmentation-on-ovis-1Tube-Link(ResNet-50)
AP50: 51.5
AP75: 30.2
AR1: 15.5
AR10: 34.5
mask AP: 29.5
video-instance-segmentation-on-youtube-vis-1Tube-Link
AP50: 86.6
AP75: 71.3
AR1: 55.9
AR10: 69.1
mask AP: 64.6
video-instance-segmentation-on-youtube-vis-2Tube-Link(Swin-L)
AP50: 79.4
AP75: 64.3
AR1: 47.5
AR10: 63.6
mask AP: 58.4
video-panoptic-segmentation-on-kitti-stepTube-Link(Swin-base)
AQ: 69.0
SQ: 74.0
STQ: 72.0
video-panoptic-segmentation-on-vipsegTube-Link(Swin-base)
STQ: 49.4
VPQ: 50.4
video-semantic-segmentation-on-vspwTube-Link(Swin-large)
mIoU: 59.6

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp