Command Palette
Search for a command to run...
MARS: Model-agnostic Biased Object Removal without Additional Supervision for Weakly-Supervised Semantic Segmentation
Sanghyun Jo In-Jae Yu Kyungsu Kim

Abstract
Weakly-supervised semantic segmentation aims to reduce labeling costs by training semantic segmentation models using weak supervision, such as image-level class labels. However, most approaches struggle to produce accurate localization maps and suffer from false predictions in class-related backgrounds (i.e., biased objects), such as detecting a railroad with the train class. Recent methods that remove biased objects require additional supervision for manually identifying biased objects for each problematic class and collecting their datasets by reviewing predictions, limiting their applicability to the real-world dataset with multiple labels and complex relationships for biasing. Following the first observation that biased features can be separated and eliminated by matching biased objects with backgrounds in the same dataset, we propose a fully-automatic/model-agnostic biased removal framework called MARS (Model-Agnostic biased object Removal without additional Supervision), which utilizes semantically consistent features of an unsupervised technique to eliminate biased objects in pseudo labels. Surprisingly, we show that MARS achieves new state-of-the-art results on two popular benchmarks, PASCAL VOC 2012 (val: 77.7%, test: 77.2%) and MS COCO 2014 (val: 49.4%), by consistently improving the performance of various WSSS models by at least 30% without additional supervision.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| weakly-supervised-semantic-segmentation-on | MARS (ResNet-101, multi-stage) | Mean IoU: 77.7 |
| weakly-supervised-semantic-segmentation-on-1 | MARS (ResNet-101, multi-stage) | Mean IoU: 77.2 |
| weakly-supervised-semantic-segmentation-on-4 | MARS (ResNet-101, multi-stage) | mIoU: 49.4 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.