Command Palette
Search for a command to run...
Zhibin Gou; Qingyan Guo; Yujiu Yang

Abstract
Generative methods greatly promote aspect-based sentiment analysis via generating a sequence of sentiment elements in a specified format. However, existing studies usually predict sentiment elements in a fixed order, which ignores the effect of the interdependence of the elements in a sentiment tuple and the diversity of language expression on the results. In this work, we propose Multi-view Prompting (MvP) that aggregates sentiment elements generated in different orders, leveraging the intuition of human-like problem-solving processes from different views. Specifically, MvP introduces element order prompts to guide the language model to generate multiple sentiment tuples, each with a different element order, and then selects the most reasonable tuples by voting. MvP can naturally model multi-view and multi-task as permutations and combinations of elements, respectively, outperforming previous task-specific designed methods on multiple ABSA tasks with a single model. Extensive experiments show that MvP significantly advances the state-of-the-art performance on 10 datasets of 4 benchmark tasks, and performs quite effectively in low-resource settings. Detailed evaluation verified the effectiveness, flexibility, and cross-task transferability of MvP.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| aspect-based-sentiment-analysis-absa-on-acos | ChatGPT (gpt-3.5-turbo, few-shot) | F1 (Restaurant): 37.71 |
| aspect-based-sentiment-analysis-absa-on-acos | MvP (muilti-task) | F1 (Laptop): 43.84 F1 (Restaurant): 60.36 |
| aspect-based-sentiment-analysis-absa-on-acos | ChatGPT (gpt-3.5-turbo, zero-shot) | F1 (Restaurant): 27.11 |
| aspect-based-sentiment-analysis-absa-on-acos | MvP | F1 (Laptop): 43.92 F1 (Restaurant): 61.54 |
| aspect-based-sentiment-analysis-absa-on-asqp | ChatGPT (gpt-3.5-turbo, few-shot) | F1 (R15): 34.27 |
| aspect-based-sentiment-analysis-absa-on-asqp | MvP (multi-task) | F1 (R15): 52.21 F1 (R16): 58.94 |
| aspect-based-sentiment-analysis-absa-on-asqp | ChatGPT (gpt-3.5-turbo, zero-shot) | F1 (R15): 22.87 |
| aspect-based-sentiment-analysis-absa-on-asqp | MvP | F1 (R15): 51.04 F1 (R16): 60.39 |
| aspect-based-sentiment-analysis-absa-on-aste | MvP (multi-task) | F1 (L14): 65.30 F1 (R15): 69.44 F1 (R16): 73.10 F1(R14): 76.30 |
| aspect-based-sentiment-analysis-absa-on-aste | ChatGPT (gpt-3.5-turbo, few-shot) | F1 (L14): 38.12 |
| aspect-based-sentiment-analysis-absa-on-aste | ChatGPT (gpt-3.5-turbo, zero-shot) | F1 (L14): 36.05 |
| aspect-based-sentiment-analysis-absa-on-aste | MvP | F1 (L14): 63.33 F1 (R15): 65.89 F1 (R16): 73.48 F1(R14): 74.05 |
| aspect-based-sentiment-analysis-absa-on-tasd | MvP (multi-task) | F1 (R15): 64.74 F1 (R16): 70.18 |
| aspect-based-sentiment-analysis-absa-on-tasd | ChatGPT (gpt-3.5-turbo, zero-shot) | F1 (R16): 34.08 |
| aspect-based-sentiment-analysis-absa-on-tasd | MvP | F1 (R15): 64.53 F1 (R16): 72.76 |
| aspect-based-sentiment-analysis-absa-on-tasd | ChatGPT (gpt-3.5-turbo, few-shot) | F1 (R16): 46.51 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.