HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

A Call to Reflect on Evaluation Practices for Age Estimation: Comparative Analysis of the State-of-the-Art and a Unified Benchmark

Jakub Paplham Vojtech Franc

A Call to Reflect on Evaluation Practices for Age Estimation: Comparative Analysis of the State-of-the-Art and a Unified Benchmark

Abstract

Comparing different age estimation methods poses a challenge due to the unreliability of published results stemming from inconsistencies in the benchmarking process. Previous studies have reported continuous performance improvements over the past decade using specialized methods; however, our findings challenge these claims. This paper identifies two trivial, yet persistent issues with the currently used evaluation protocol and describes how to resolve them. We offer an extensive comparative analysis for state-of-the-art facial age estimation methods. Surprisingly, we find that the performance differences between the methods are negligible compared to the effect of other factors, such as facial alignment, facial coverage, image resolution, model architecture, or the amount of data used for pretraining. We use the gained insights to propose using FaRL as the backbone model and demonstrate its effectiveness on all public datasets. We make the source code and exact data splits public on GitHub.

Code Repositories

paplhjak/facial-age-estimation-benchmark
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
age-estimation-on-afadResNet-50-OR-CNN
MAE: 3.16
age-estimation-on-afadResNet-50-DLDL-v2
MAE: 3.15
age-estimation-on-afadResNet-50-DLDL
MAE: 3.14
age-estimation-on-afadResNet-50-Unimodal-Concentrated
MAE: 3.20
age-estimation-on-afadResNet-50-Cross-Entropy
MAE: 3.14
age-estimation-on-afadResNet-50-Mean-Variance
MAE: 3.16
age-estimation-on-afadResNet-50-Regression
MAE: 3.17
age-estimation-on-afadResNet-50-SORD
MAE: 3.14
age-estimation-on-afadFaRL+MLP
MAE: 3.12
age-estimation-on-agedbResNet-50-DLDL
MAE: 5.80
age-estimation-on-agedbResNet-50-Unimodal-Concentrated
MAE: 5.90
age-estimation-on-agedbResNet-50-DLDL-v2
MAE: 5.80
age-estimation-on-agedbResNet-50-SORD
MAE: 5.81
age-estimation-on-agedbResNet-50-OR-CNN
MAE: 5.78
age-estimation-on-agedbFaRL+MLP
MAE: 5.64
age-estimation-on-agedbResNet-50-Cross-Entropy
MAE: 5.81
age-estimation-on-agedbResNet-50-Regression
MAE: 6.23
age-estimation-on-agedbResNet-50-Mean-Variance
MAE: 5.85
age-estimation-on-cacdResNet-50-Cross-Entropy
MAE: 3.96
age-estimation-on-cacdResNet-50-Regression
MAE: 4.06
age-estimation-on-cacdResNet-50-OR-CNN
MAE: 4.01
age-estimation-on-cacdResNet-50-DLDL-v2
MAE: 3.96
age-estimation-on-cacdResNet-50-SORD
MAE: 3.96
age-estimation-on-cacdResNet-50-Mean-Variance
MAE: 4.07
age-estimation-on-cacdResNet-50-Unimodal-Concentrated
MAE: 4.10
age-estimation-on-cacdFaRL+MLP
MAE: 3.96
age-estimation-on-cacdResNet-50-DLDL
MAE: 3.96
age-estimation-on-chalearn-2016FaRL+MLP
MAE: 3.38
age-estimation-on-morph-album2-se-1ResNet-50-DLDL
MAE: 2.81
age-estimation-on-morph-album2-se-1ResNet-50-Cross-Entropy
MAE: 2.81
age-estimation-on-morph-album2-se-1ResNet-50-DLDL-v2
MAE: 2.82
age-estimation-on-morph-album2-se-1ResNet-50-SORD
MAE: 2.81
age-estimation-on-morph-album2-se-1ResNet-50-Regression
MAE: 2.83
age-estimation-on-morph-album2-se-1ResNet-50-Mean-Variance
MAE: 2.83
age-estimation-on-morph-album2-se-1ResNet-50-OR-CNN
MAE: 2.83
age-estimation-on-morph-album2-se-1FaRL+MLP
MAE: 3.04
age-estimation-on-morph-album2-se-1ResNet-50-Unimodal-Concentrated
MAE: 2.78
age-estimation-on-utkfaceResNet-50-OR-CNN
MAE: 4.40
age-estimation-on-utkfaceResNet-50-Cross-Entropy
MAE: 4.38
age-estimation-on-utkfaceResNet-50-SORD
MAE: 4.36
age-estimation-on-utkfaceResNet-50-DLDL
MAE: 4.39
age-estimation-on-utkfaceResNet-50-DLDL-v2
MAE: 4.42
age-estimation-on-utkfaceFaRL+MLP
MAE: 3.87
age-estimation-on-utkfaceResNet-50-Regression
MAE: 4.72
age-estimation-on-utkfaceResNet-50-Unimodal-Concentrated
MAE: 4.47
age-estimation-on-utkfaceResNet-50-Mean-Variance
MAE: 4.42

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp